

Protein adsorption in pores of ultrafiltration membranes

P. Dutournié, S.M. Miron, A. Ponche,

Heraklion - 28/06/19

Introduction

Membrane filtration

Pharmaceutical, food, petroleum, paper, ... industries

Separation process widely used for :

- desalting, purifying, decontaminating, concentrating, ...
- sea water, wastewaters, liquid food, ...

Advantages :

- easy control, energy efficient process, environmental respect

Introduction

Aim of this work

Studying adsorption phenomena in UF membrane (commercial TiO₂) and consequences on the process performances

- \checkmark hydraulic performances
 - (filtrated flow rate)
- \checkmark membrane selectivity

(separation effectiveness)

Introduction

Context

Solutions filtrated (sea water, wastewater, liquid food, ...) Contain adhesive or viscous products as proteins

- \rightarrow Gradual decline of membrane performances
- \rightarrow Up to complete stop of the installation
- → Requires a cleaning process [] waste of time and money, use of chemicals and energy
- \rightarrow Generation of new wastes (solid and liquid)

RS2E

Experimental section

Experimental setup

Experimental section

Experimental tests:

Filtration of protein-water solutions

After each test

1 - Filtration of pure water \Box estimation of hydraulic performances \Box permeation flux (J_w) vs. applied pressure (ΔP)

2- Filtration of a neutral solute (Vitamin B12) rejection rate vs. applied pressure

□ Nernst-Planck model for neutral molecule □ r_p

Experimental results

Filtration tests of a neutral solute (Vitamin B12)

Approximating Rexp = $f(\Delta P)$ by the equation $\prod r_p$

Experimental section

3 filtration tests of lysozyme

Increase of selectivity R(VB12) = 54 to 85 % and R (lysozyme) = 65 to 100% Hydraulic performances decline (> 30%)

Experimental results

Tests with 7 fresh membranes; filtration of Lysozyme and L-tyrosine (green - orange)

After 7-8 successive tests] hydraulic performances (60-70 % decline)

Experimental results

Adsorption reversible / irreversible

Regeneration tests

hydrothermal treatment (100°C - 5 days)

Use of surfactant

Acid / base cleaning at room T

Acid / base cleaning at high temperature (> 80 °C)

Experimental results

RS2E

UNIVERSITÉ

Adsorption of proteins or amino-acids in membrane pores

- □ adsorption almost irreversible
- rapid performance downgrading
- ideal breeding ground for waterborne bacteria

Main issues / challenges

- understand adsorption phenomena in the pore
- □ limit pore clogging / or reversibility
- □ surface modification to reduce protein / surface afinity

Selectivity increases & hydraulic permeability decreases:

RS2E

□ size pore distribution

Average pore radius decreases

no adsorption in the smallest size pores

 \square little or no adsorption at the membrane surface

Continuous vs. Discontinuous operation

 \rightarrow filtration during 24 hours or 2 hours = same results

ata 150 90 RS2E

Experimental results

Adsorption phenomena (unsteady) 1st filtration test

Conclusion

RS2E

Filtration tests of proteinic solutions

- membrane selectivity []

- hydraulic performances

- adsorption in the largest pores
- no adsorption in the smallest and at the surface
- modification of protein conformation

And consequently

- requires treatment for membrane regeneration

UNIVERSITÉ

Thank you for your attention

afa(